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Soliton solutions are obtained in a vertical cavity surface emitting laser coupled with frequency selective feedback. Bright 
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nonlinearity, governs the soliton dynamics in the cavity. He’s semi-inverse Variational method is implemented to retrieve 
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Gaussian soliton solutions can be a used to realize all-optical tunable devices and study cavity soliton in the system. 
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1. Introduction 
 
Spatial dissipative solitons (SDS) are self-localised 

structures on a spatially extended system that is far from 
equilibrium [1-4]. Dissipative solitons (DS) appear as a 
discrete family of bound states. These are observed in 
numerous systems such as in nonlinear optics [1-4], fluid 
dynamics [5], ferrofluids [6], gas discharge [7], granular 
media [8], different lossy biological [9] and chemical 
systems [10] and even in nature [11]. A nice review on 
DS can be found in reference [12] and the references 
therein, while the reference [13] elucidates the diversity 
of such soliton. DS are significantly different but more 
general in comparison to that arises in a conservative 
system. For instance, in a conservative optical system 
spatial soliton is obtained when self-diffraction of the 
laser beam is balanced by means of nonlinearity induced 
self-focusing [14]. In a dissipative system, in addition to 
the aforesaid balance, it is required to compensate the 
inevitable loss of the system with some gain to achieve a 
soliton [15]. Since this kind of soliton is obtained in a 
dissipative environment they are generally referred as 
dissipative solitons, although other names like dissiton 
[16], ‘auto soliton’ [17] have been coined. Due to the 
requirement of the additional balance DSs are obtained 
in discrete parametric zone. The main requirement for 
the survival of DS is the constant supply of energy from 
the external source. Optical DS has been widely 
investigated in laser cavity, particularly in vertical cavity 
surface emitting laser (VCSEL). Experimental 
demonstration of optical DS are though rare until recent 
past [18-20], theoretical investigation witnessed huge 
advancement in the field [21- 23]. In order to keep the 
solitons ‘alive’ inside the laser cavity, a gain mechanism 

is required. This gain mechanism can be provided by several 
means, namely, optical injection in the form of holding 
beam, frequency selective feedback using Bragg’s grating 
[20] or using a saturable absorber [21]. In the present model 
we compensate the loss in VCSEL by using frequency 
selective feedback (FSF) [22, 23]. For mathematical 
modelling of such dissipative systems complex Ginzburg-
Landau equations (CGLE) are widely used [22, 24, 25]. 
Some work used perturbed nonlinear Schrödinger equation 
(NLSE) as a model [26]. It is worthy to mention that the 
CGLE can be considered as a perturbed NLSE [27]. Here, 
we consider a CGLE which describes a realistic model of the 
VCSEL in conjugation with FSF. This may yield a special 
kind of optical dissipative soliton, called cavity soliton. 
However, we confine our investigation to traveling wave 
solution only. Cavity soliton can be viewed as a soliton 
confined between the cavity walls. Ref. [28] provides the 
evidence that a VCSEL with FSF supports cavity solitons, 
which aroused as localized traveling waves on homogenous 
stable non-lasing background. Necessarily, a TW needs to 
fulfil few standard criteria to be referred as a CS. Namely, it 
should show exponential localization at any point of the 
spatially extended system and exhibit  bistability, i.e., being 
‘on’ or ‘off’ in the same condition. Here, we find the 
traveling wave soliton solution of the system in the presence 
of dissipation using He’s semi-inverse variational method 
[29-32]. It’s an appreciated method to find traveling wave 
solution in a wide variety of systems including nanofibers 
[33]. Besides Kerr nonlinear media, the suitability of this 
method now is established in studying optical soliton 
perturbation in media having different nonlinearities, 
namely, non-Kerr-law nonlinearity [34], dual power-law 
nonlinearity [35] and log-law nonlinearity [36].  In addition 
to provide the best suitable solution to the system this 
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method gives an excellent overview of the nature of 
solutions [37]. It is one of the strongest approximate 
methods, which has been successfully applied to solve 
numerous systems like Helmholtz equation, Broer-Kaup 
(BK) systems, Whitham Broer-Kaup (WBK) systems 
[38], cubic-quintic Duffing oscillators [39], and periodic 
solutions of some nonlinear oscillators with strong 
nonlinearity [29].  The layout of this paper is as follows. 
In section 2 we presented the mathematical model. 
Section 3 contains the results and discussions, which is 
followed by a brief conclusion. 

 
 

2. Mathematical model 
 
At steady state, the pulse dynamics in a laser cavity, 

usually VCSEL, coupled with FSF is represented by the 
following CGLE [22]: 
 

  
  0),(

),(||11

),(
),(1

2

2

2













 



txEiba

txEEi

x

txE
itxE

t


                  (1) 

 

where, ),( txE   is the slowly varying wave envelope of 

the electric field of the laser pulse, t is cavity round trip 
time and x is the coordinate transverse to the cavity axis. 

Here,  2
0
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0  represents resonant frequency and 0 is the line-

width enhancement parameter  of the feedback field.   
represents the coupling constant or feedback strength. 
  represents scaled gain that is responsible for the 

stabilization of the off-state in VCSEL. The line-width 
enhancement parameter   usually attains large positive 
values for VCSEL. In equation (1), the first term 
represents evolution of the wave envelope ),( txE  and 

linear loss inside the cavity. The second term is the 
diffraction term. The third term contains Kerr 
nonlinearity and nonlinear loss/gain (depending upon the 
sign of the coefficients) incurred in the transverse 
direction of cavity. The last term in the equation 
represents the contribution of frequency selective 
feedback. Equation (1) can be rewritten as a perturbed 
nonlinear Schrödinger equation (NLSE) as follows: 
 

 

),(||

 

*2

2

2

EEiREE

Eb
x

E

t

E
i














                    (2) 

 

where   EEEaEER 2||1)*,(    is the 

perturbation term, nullifying which one can retrieve an 
unperturbed NLSE. Both the forms of equations (1) and 
(2) are well explored in different fields of study, 
particularly, in cavity dynamics. In the present 
investigation, we introduce the following perturbation 
term: 
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The above form represents the slope of the perturbation, 

which has been used in anticipation to include the effect of 
modulation of perturbation in a spatially distributed system. 
Alternatively, the two terms represent inter-modal dispersion 
as well as self-steepening effect. This slope could add a 
pseudo 3D effect in the resultant soliton profile, which may 
be even better than an actual 3D profile as far as 
visualization is concerned. 

In order to find the 1-soliton traveling wave solution we 
consider the following ansatz [27, 29]: 
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where )(s  represents the pulse shape, vtxs  , v  is 

the velocity of the soliton, k  is the soliton wave number, 
  is the soliton frequency and    is the phase constant. 

Hereafter we will refer )(s  as profile function. 

Substituting equation (4) in equation (2) that incorporates 
the new perturbation term given by equation (3) and 
separating the real and imaginary parts, we obtain the 
following set of equations: 
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and 
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where dsd /   and 22 / dsd   . Solving 

equation (6) for  we get, 
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Equation (7) indicates that the soliton solution exists iff 
  012 3   akv . Therefore, for any 

acceptable profile function  , the wave velocity needs to 

satisfy the following relation:  
 

   akv  21                          (8) 
 

Taking into account the limiting condition of velocity, 
as stated in equation (8), the velocity of the traveling wave 
can be kept constant. The velocity need to be a positive 
quantity. For a suitable choice of parameters (α=2.7, 
μ=1.397, σ = 0.7, 0 = 0.5 and 0  =0.1) and obeying the 

inequality relation as stated in equation (8), we consider 
7568.2v , which we used throughout the investigation. 

Multiplying equation (5) by    and then integrating it over 

the entire space, we obtain: 
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where, K  is the constant of integration. For this system, 
a new quantity J  can be defined as follows [30]: 
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On substituting equation (9) in equation (10), we 
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A proper choice of the profile function )(s is now 

required to proceed further.  
 
 

3. Results and discussion 
 

To solve equation (1) we consider two different 
profile functions. One is hyperbolic secant ( sech ) 
function; a widely studied standard function for bright 
soliton and the other is a cosh-Gaussian function; an 
exotic function. The former is adopted to reveal the 
nature of the basic TW solution, while the latter is 
considered in the anticipation of achieving a versatile 
TW profile.  

 
Case-I: sech profile function 
 
The fundamental modes emitted by lasers are 

generally modelled as either ‘ sech ’ or Gaussian type. 

sech  function is the exact solution of an unperturbed 
cubic NLSE. Gaussian function is also equally popular 
for the ease of mathematical modelling and calculations 
without altering the physics behind. In the present case 
we choose the standard sech  type (bright) one-soliton 
solution of the following form: 
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The parameters P and R  represent the amplitude 
and inverse of the width of soliton respectively. Our 
primary target is to determine the values of P and R. 
Substituting equation (12) in equation (11), we obtain 
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The values of P and R  can be obtained, using the 
principle of variation, i.e., 0/  PJ  and 0/  RJ . 
These conditions in conjugation with equation (13) lead to 
the following relations:  
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On solving equations (14) and (15), we obtain 
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Therefore, the final 1-soliton TW solution for the 
VCSEL-FSF system reads as: 
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Fig. 1 depicts the intensity profile of the sech 1-soliton 
solution. This solution is found to be valid for a large choice 
of system parameters.  

 
Case-II: Exotic cosh-Gaussian profile function 
 
We now explore the possibility to achieve soliton 

solution with a profile different from the standard sech  
form. We consider cosh-Gaussian profile function of the 
following form as an ansatz for the system: 
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Here, A  represents the pulse amplitude, B  is the cosh 
parameter and T  represents the pulse width. This type of 
pulse can be generated by superposing two decentred 
Gaussian pulses [40]. This profile function is of fundamental 
interest because by choosing suitable cosh parameter a 
variety of field distribution can be achieved. At a very small 
value of cosh-parameter the pulse is almost Gaussian, which 
will transform to a deformed Gaussian, then flattop and 
finally to one with a central dip with increasing value of 
cosh-parameter. Cosh-parameter also decides the steepness 
of the profile, which in turn influences other optical 
localized structures nearby. Thus the cosh-parameter renders 
a controlling tool and hence has potential applications in all-
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optical tunable devices [41].  Besides, a large 3D cosh-
Gaussian function, which is of annular intensity profile 
may trap a small optical structure and, in principle, 
quantum particles.  

 

 
 

Fig. 1. 3D profile of sech traveling wave soliton 
solution. Inset shows 2D profile, i.e., cross-section of 

the  3D profile. Here, α=2.7, μ=1.397, σ=0.7, 0 =0.5  

                                   and 0  =0.1. 
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Fig. 2. Plots of equations (21)-(22) with T=1.02. The 
long intersecting/ overlapping region corresponds to 

the stable soliton solution. 
 
Now, substituting the cosh-Gaussian shape function, 

i.e., equation (19) in equation (11), we obtain the 
following relation for J: 
 

 
.344

4

12)1(
8

2

1222

8

2

22
22

22

22

222

16 


















































TB

e
TB

e
TAk

TB

eTAakb

TB

eTB
T

A
J








   

(20) 

Like the case of sech solution the values of A , B  and 
T  can be determined by varying J with respect to each 
system parameter, i.e., 0/  AJ , 0/  BJ  and 

0/  TJ . These yield the following equations 
respectively,  

 

 
 

Fig. 3. Traveling wave soliton solution of cosh-Gaussian 
profile. A=0.6236, B= 2.6505 and T=1.02. 2D profile is in 

the inset. Here, α=2.7, μ=1.397, σ=0.7, 0 =0.5 and 0  

=0.1. Cosh-Gaussian  nature  of  profile is evident from the  
                         dip between the two humps. 

 

 
 

Fig. 4. Cosh-Gaussian traveling wave soliton solution for 
A=0.2599, B=3.1874, T=1.02. 2D profile is in the inset. As 
A decreases and B increases, the dip tends to touch the 

bottom line. The values of α, μ, σ, 0  and 0  are same as  

                                         in fig. 3. 
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The solutions of equations (21) - (23) give the 

values of A , B  and T . Solving the equations (21)- 
(23) analytically is a cumbersome process. Therefore, 
solving numerically, Fig. 2 depicts the plot of equations 

(21) & (22), for a constant value of T . The intersections 
are the solutions of equation (21) and (22). In fig. 2, 
instead of few discrete solution points we get a long 
overlapping region that signifies a large family of 
parametric solution. The curves intersect at region where 
value of A is less than 1. Any point on the intersecting 

region, with the fixed T -value corresponds to a possible 
solution of the system.  

Considering the different solution points from fig. 2, 
different solution profiles are plotted. For the point 

considering values A = 0.6236, B = 2.6505 and T  = 
1.02, a 3D cosh-Gaussian function profile is plotted, 
which is shown in fig. 3. Inset shows the corresponding 
2D profile with same parametric values. It is evident 
from the figure that the pulse propagates as a stable 
soliton with a central dip. Figs. 4 and 5 show the cosh-

Gaussian profile functions with ( A  = 0.2599, B = 

3.1874) and ( A  = 0.0255, B  = 4.3832) respectively at 

constant T = 1.02. As the value of A  decreases and B  
increases, the dip between two humps changes its shape 
and depth, which is clearly evident from the inset of 
figures 3, 4 and 5, respectively. 

 

 
 

Fig. 5. Cosh-Gaussian traveling wave soliton solution for 
A=0.0255, B=4.3832, T=1.02. Inset is the corresponding 
2D profile. A greater value of B broadens the dip 
significantly,  which  is  clearly  evident in  2D  profile. The  

        values of α, μ, σ, 0  and 0  are same as in fig. 3. 

 
 
4. Stability analysis 
 
For understanding the dynamics of any system, stability 

analysis is an essential routine. Thus we now analyse the 
stability of the solutions obtained in the previous section. At 
steady state the system described by equation (2) in 
conjugation with equation (3) obeys the following 
conditions: 022  xE , 0 xE . We consider, 
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A small perturbation is now added to the system as 
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coupled equations: 
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where iqxEeQ   and iqxeEQ  **  . Equations 

(25) and (26) can be put in the matrix form as 
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t
                  (27) 

 
where  
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and  
 

)( qiB                               (29) 
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Fig. 6. Bound oscillation for the system described by 
equations (25) and (26) for parameter set same as in 
figure 1. (a) and (b) shows the evolution of Q and Q* 
with  respect to t, respectively and (c) shows the phase  
              plot of Q and Q* during the evolution. 

 
A* and B* are complex conjugates of A and B 

respectively. Eigen values for equation (27) are given 
by: 
 

0)Re(2
222  BAA                 (30) 

or 
222))(Re(Re ABAA           (31) 

 
Since )Re( A  is zero and |||| BA   both the 

Eigen values are purely imaginary. Further, as the real 
parts of the Eigen values are zero, the fixed points are 
neutrally stable. Thus, in the neighbourhood of the fixed 
point, soliton parameters will oscillate around the steady 

state value. Time evolution of Q  and *Q  are obtained 

by solving equations (25) and (26) numerically using 
Range-Kutta 45 method and depicted in figures (6a) and 

(6b) respectively.  Both Q  and *Q  shows bound 

periodic oscillation for the range of  5.5) ,1.0( . 

Phase plot shown in figure (6c) also supports the bound 
motion of the system in the phase plane. As the system 

parameter 0 , the system oscillates with a very large 

amplitude thus pushing the system towards instability. 
Figure 7 shows the unbound dynamics of the system with 

01.0 . Although, the phase portrait is bound, but with a 

large amplitude.  
 

 
 

Fig. 7. Unbound dynamics of the system described by 
equations (25) and (26) for the same parameter set as 
stated in figure 1, but changing the value of μ = 0.01. (a) 
and (b) shows the unbound evolution of Q and Q* with 
respect to t, respectively and (c) shows the phase plot of Q 
and Q* during the evolution. Although, phase plot seems to  
 be bound, it actually exhibits a large amplitude of oscillation. 

 
 

5. Conclusion 
 
In this paper we derived TW soliton solutions in a 

VCSEL coupled with a FSF. He’s semi-inverse variational 
method has been successfully used to obtain a sech type and 
an exotic cosh-Gaussian type soliton solution by solving the 
governing CGLE. We identified a parametric region that 
yield a large family of stable soliton solutions. The versatile 
profile of cosh-Gaussian type soliton solution is of 
fundamental interest as well as can be utilized for tuning and 
controlling the system behaviour.  Such soliton solutions 
have potential applications in fabrication of all-optical 
devices, data processing and controlling units, optical 
memories, delay lines and optically addressable displays. 
Moreover, a 3D cosh-Gaussian distribution with annular 
intensity profile may trap a small optical structure even 
quantum particles.  

 
Acknowledgement 
 
SJ would like to acknowledge UGC, Govt. of India, for 

providing research fund through UGC-BSR research Start-
up-Grant No.F.20-1/2012 (BSR)/20-13(12)/2012(BSR). BK 
would like to acknowledge the financial support of UGC, 
Govt. of India, through UGC-Meritorious scholarship [F.4-



434                                                    Baldeep Kaur, Soumendu Jana, Qin Zhou, Anjan Biswas, Milivoj Belic 

 
1/2006(BSR)/7-304/2010(BSR)]. This research was 
funded by Qatar National Research Fund (QNRF) under 
the grant number NPRP 6-021-1-005. The fourth and 
fifth authors (AB & MB) thankfully acknowledge this 
support from QNRF. The authors also declare there is no 
conflict of interest.   

 
 
References 

 
  [1] T. Ackemann, W. J. Firth, G. L. Oppo, Advances in 

Atomic, Molecular and Optical Physics. San Diego, 
USA: Academic Press, 57, 323 (2009)  

  [2] W. J. Firth, G. K. Harkness, Asian Journal of 
Physics, 7, 665 (1998)  

  [3] S. Barland, J. R. Tredicce, M. Brambilla, L. A.  
Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. 
Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger, 
Nature, 419, 699 (2002) 

  [4] W. J. Firth, C. O. Weiss, Opt and Photon News, 13, 
54 (2002) 

  [5] P. Manneville, Dissipative Structures and Weak 
Turbulence. Academic press: Boston; 1990. 

  [6] R. Richter, I. V. Barashenkov, Phys Rev Lett. 94, 
184503 (2005) 

  [7] D. Mihalache, D. Mazilu, F. Lederer, Y. V. 
Kartashov, L. C. Crasovan, L. Torner, B. A. 
Malomed, Phys Rev Lett. 97, 073904 (2006) 

  [8] I. Müller, E. Ammelt, H. G. Purwins, Phys Rev 
Lett. 82, 3428 (1999) 

  [9] J. D. Murry, Mathematical Biology: Spatial models 
and biomedical applications, Springer-Verlag: 
Berlin; 2003. 

[10] J. Ross, S. C. Müller, C. Vidal, Science, 240, 460 
(1998)  

[11] A. P. Stamp, M. Jacka, J Fluid Mech. 305, 347 
(1995) 

[12] N. Akhmediev, A. Ankiewicz, Dissipative Solitons. 
Vol. 661, Lecture Notes in Physics. Springer-
Verlag: Berlin; 2005. 

[13] N. Akhmediev, A. Ankiewicz, Dissipative Solitons: 
From Optics to Biology and Medicine. Vol. 751, 
Lecture Notes in Physics. Springer-Verlag: Berlin; 
2008. 

 [14] Z. Chen, M. Segev, Rep Prog Phys. 75, 086401 
(2012)  

 [15] W. J. Firth, Theory of Cavity Solitons. In: AD 
Boardman, AP Sukhorukov editors. Soliton Driven 
Photonics. Netherlands: Kluwer Academic 
Publishers; p. 459, 2009.  

[16] N. N. Rosanov, G. V. Khodova, Opt and Spectr. 65, 
449 (1988) 

 
 
 
 
 
 
 

[17] S.V. Fedorov, A. G. Vladimirov, G. V. Khodova, N. N. 
Rozanov, Quant Electron. 27, 949 (1997) 

[18] E. A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. 
Lange, F. Lederer, Phys Rev Lett.  90, 253903 (2003) 

[19] Z. Bakonyi, D. Michaelis, U. Peschel, G. Onishchukov, 
F. Lederer, J Opt Soc Am B. 19(3), 487 (2002) 

[20] N. Radwell, T. Ackemann, IEEE J Quant Electron.  
45(11), 1388 (2009) 

[21] M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L. A. 
Lugiato, I. Protsenko, M. Brambilla, Appl Phys B, 
81(7), 913 (2005) 

[22] W. J. Firth, P. V. Paulau, Eur Phys J D, 59, 13 (2010) 
[23] A. J. Scroggie, W. J. Firth, G. L. Oppo, Phys Rev A, 80, 

013829 (2009) 
[24] V. Skarka, N. B. Aleksic, H. Leblond, B. A. Malomed, 

D. Mihalache, Phys Rev Lett.  105, 213901 (2010) 
[25] E. N. Tsoy, A. Ankiewicz, N. Akhmediev, Phys Rev E, 

73, 036621 (2003) 
[26] F. Abdullaev, V. V. Konotop, M. Salerno, A. V. Yulin, 

Phys Rev E, 82, 056606 (2010) 
[27] A. Zavyalov, R. Iliew, O. Egorov, F. Lederer, Phys Rev 

A, 79, 053841 (2009) 
[28] P. V. Paulau, A. J. Scroggie, A. Naumenko, T. 

Ackemann, N. A. Loiko, W. J. Firth, Phys Rev E, 75, 
056208 (2007) 

[29] A. Amani, D. D. Ganji, A. A. Jebelli, M. Shahabi, N. S. 
Nosar, Int. J. Appl. Math. Comput. 2(3), 33 (2010) 

[30] A. Biswas, Progress in Electromagnetics Research, 96, 
1 (2009) 

[31] A. Biswas, S. Johnson, M. Fessak, B. Siercke, E. 
Zerrad, S. Konar, J Mod Opt. 59(3), 213 (2012) 

[32] A. Biswas, Quant Phys Lett. 1(2), 79 (2012) 
[33] A. Biswas, D. Milovic, D. Michelle, M. Savescu, M. F. 

Mahmood, K. R. Khan, R. Kohl, J. Nonlinear Opt. 
Phys. Mat. 12(4), 1250054 (2012) 

[34] R. Kohl, D. Milovic, E. Zerrad, A. Biswas, J. Infrared 
Milli Terahz Waves. 30, 526 (2009) 

[35] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, K. R. Khan, 
M. F. Mahmood, A. Biswas, Optik, 125(17), 4945 
(2014) 

[36] A. Biswas, D. Milovic, R. Kohl, Inverse Problems in 
Science and Engineering, 20(2), 227 (2012) 

[37] Z. L. Tao, Zeitschrift für Naturforschung, 63(a), 634 
(2008) 

[38] M. El-Sabbagh, S. El-Ganaini, International 
Mathematical Forum, 7, 2131 (2012) 

[39] S. S. Ganji, D. D. Ganji, H. Babazadeh, S. Karimpour, 
Progress in Electromagnetics Research M, 4, 23 (2008) 

[40] S. Konar, S. Jana, Opt Commun. 236, 7 (2004) 
[41] S. Jana, S. Konar, Opt Commun. 267, 24 (2006)  
 
____________________  
*Corresponding author: soumendujana@yahoo.com  
  


